Exploring Novel Synthetic Concepts and Strategies Using Mechanochemistry

Author:

Kubota Koji12

Affiliation:

1. Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 , Japan

2. Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 060-8628 , Japan

Abstract

Abstract In the field of organic synthesis, a ball-milling synthetic technique has garnered significant attention in recent years as an eco-friendly and sustainable alternative to traditional solution-based methods. In addition to its environmental benefits, solid-state organic synthesis using mechanochemical protocols enables access to novel areas of chemical space that are unavailable by conventional solution-based reactions. In this context, we are interested in designing and developing new organic transformations based on the unique solid-state reaction environment and the use of mechanical forces in a ball mill. In this Account, we highlight our latest findings concerning the creation of novel synthetic concepts and strategies. These approaches harness the distinctive reaction environment of mechanochemistry, rather than merely transferring well-established reactions from solution-based protocols to mechanochemical conditions.

Publisher

Oxford University Press (OUP)

Subject

General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3