Produzierende Unternehmen stehen in einem dynamischen Umfeld vor der Herausforderung eine zunehmende Datenmenge effizienter zu verarbeiten. In diesem Zusammenhang werden häufig Ansätze des maschinellen Lernens (ML) diskutiert. Der Beitrag stellt eine umfassende Aufarbeitung des Stands der Forschung bezogen auf den Einsatz von ML-Ansätzen in der Produktionsplanung und -steuerung (PPS) bereit. Daraus lässt sich der Forschungsbedarf in den einzelnen Aufgabengebieten der PPS ableiten.
In a dynamic environment, manufacturing companies face the challenge of processing an increasing amount of data more efficiently. In this context, approaches of machine learning (ML) are often discussed. This paper provides a comprehensive review of the state of the art regarding the use of ML approaches in production planning and control (PPC). Based on this, the need for research in the individual task areas of PPC can be derived.