Reception of differential binary phase shift keying signals with weight processing of sub-symbols in information transmission systems with frequency hopping spread spectrum.

Author:

Paramonov A.A., ,Hoang Van Zung,

Abstract

Signals with frequency hopping spread spectrum (FHSS) have long been widely used in military radio communication systems (RCS) due to their frequency-energy characteristics. In such systems, the most important characteristic is noise immunity, i.e. the ability to ensure reliable transmission and reception of information under the influence of various types of organized intentional and unintentional interference. In this paper, we consider the case when the input of the receiver, in addition to the receiver's own noise, contains deliberate interference, which is considered noise interference. In this case, it is assumed that the interference covers only part of the operating frequencies of the radio communication system. The algorithm of optimal noncoherent signal reception with weight processing for making a decision about the transmitted symbol (bit) is in the focus of the paper. Static radio engineering methods, as well as Monte Carlo simulation, have been used to evaluate the noise immunity of receiving differential binary phase shift keying signals with FHSS when exposed to deliberate Partial-Band Interference. It is shown that the noise immunity of a radio communication system under conditions of destructive influence can be improved by using the intra-symbols FHSS mode with the proposed reception algorithm. With an increase in the signal-to-interference ratio, the noise immunity of information transmission increases significantly. The optimal strategy for dealing with Partial-Band Interference when the RCS is operating in the intra-symbols FHSS mode is to select the optimal multiplicity of symbol frequency diversity, which minimizes the probability of a bit error probability. The obtained dependencies are presented in order to compare and determine the effectiveness of the considered transmission mode with the proposed reception algorithm.

Publisher

Kotelnikov Institute of Radioengineering and Electronics of Russian Academy of Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3