Design and Analysis of Full Adder Using 0.6 Micron CMOS Technology

Author:

Lee Chen Fei ,Siti Husna Abdul Rahman ,Subramaniam Krishnan,Zainuddin Ahmad AnwarORCID

Abstract

The design of a full adder involves the use of logic gates so that the design can convert 8 inputs to create a byte-wide adder and to force the carry bit to the other adder.   However, the uses of multiplexers to replace the logic gates in the construction of the full adder is proven to be possible due to the function of the multiplexers to act as the digital switch in the system that provides the flow of digital information from multiple inputs into an output. This research aims to explore the possibility of implementing the multiplexers into the design of the full adder and to analyse the different possible full adder design using the multiplexers. Using the multiplexers also allows for fewer logic gates to be used in the design of the full adder, which reduces the overall area coverage of the full adder. However, adding multiplexers does not make a complete adder more efficient and may slow it down. Thus, this article compares a conventional full adder with logic gates, a full adder with two 2:1 multiplexers, and a full adder with six 2:1 multiplexers in terms of power usage, time delay of the Sum and Carry outputs, and technology (0.6 μm).

Publisher

Penteract Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3