UNDERSTANDING WEB TRAFFIC ACTIVITIES USING WEB MINING TECHNIQUES

Author:

Yau Ng Qi,Zainon Wan

Abstract

Web Usage Mining is a computational process of discovering patterns in large data sets involving methods using the artificial intelligence, machine learning, statistical analysis and database systems with the goal to extract valuable information from accessing server logs of World Wide Web data repositories and transform it into an understandable structure for further understanding and use. Main focus of this paper will be centered on exploring methods that expedites the log mining process and present the result of log mining process through data visualization and compare data-mining algorithms. For the comparison between classification techniques, precision, recall and ROC area are the correct measures that are used to compare algorithms. Based on this study it shows that Naïve Bayes and Bayes Network are proven to be the best algorithms for that.

Publisher

Granthaalayah Publications and Printers

Reference10 articles.

1. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.N. (2002): Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1, pp. 12-23.

2. A Tool for Web Usage Mining

3. Anand S. Lalani (2003). Data Mining of Web Access Logs. A minor thesis, School of Computer Science and Information Technology, Faculty of Applied Science, Royal Melbourne Institute of Technology, Melbourne, Victoria, Australia.

4. In search of reliable usage data on the WWW

5. Teressa T. Chikohora (2014): A Study of the Factors Considered when Choosing an Appropriate Data Mining Algorithm. International Journal of Soft Computing and Engineering (IJSCE) , Volume-4, Issue-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3