Abstract
To solve the problem that thin phase pneumatic conveying elbow is easy to wear, the particle mass flow rate, gas velocity, bending diameter ratio and particle size are selected as the influencing factors. The orthogonal test of four factors and four levels is carried out by using CFD-DEM coupled numerical simulation. The results of bending pipe wear, particle velocity and system pressure drop under different conditions are obtained. The results show that the particle mass flow and gas velocity have significant effects on the above three evaluation indexes, while the bending diameter ratio and particle size have no significant effects on the particle velocity and bending wear. Under the discussed conditions, the factors corresponding to the minimum wear are: mass flow rate of 0.5kg/s, gas velocity of 30 m/s, bending diameter ratio of 4.5D, particle size of 2.5mm.
Publisher
Granthaalayah Publications and Printers
Reference23 articles.
1. Biao, H. (1984). Pneumatic Conveying [M]. Shanghai: Shanghai Science and Technology Press.
2. Bing-Tao, H., Rong-Tao, Z., Chao-Yong, L. (2019). Simulation Study on Erosion Failure of Elbow and Analysis of Influencing Factors [J]. Journal of Changzhou University (Natural Science Edition), 31(02), 27-34.
3. Finnie, I. (1972). Some Observations on the Erosion of Ductile Metals[J]. Wear, 19(1), 81-90. https://doi.org/10.1016/0043-1648(72)90444-9
4. Li, X., Yan, F., & Tu, P. P. (2021). Particle Dynamics Analysis in Bend in a Horizontal-Vertical Pneumatic Conveying System With Oscillatory Flow[J]. Advanced Powder Technology, 32(3), 637-645. https://doi.org/10.1016/j.apt.2020.12.031
5. Lin-li, Z., Xu-ming, P., & Xu, L. (2019). Optimization of Pneumatic Conveying Kinetic Parameters of Powder Particles and Analysis of Pressure Drop Characteristics [J]. Chemical Engineering & Machinery, 46(01), 29-34.