ANALYSIS OF THE EFFECT OF QUANTITY OF CATALYST AND LAMINATE THICKNESS ON CURING TIME IN PRODUCTION OF GLASS REINFORCED POLYESTER COMPOSITE

Author:

R Chemeli ,Ondieki C.M.

Abstract

Production process of reinforced plastic composite materials involves the curing of a thermosetting resin through an exothermic chemical reaction. Research studies have shown that the exothermic heat released during curing process and whose degree varies with laminate thickness has an effect on curing time. The curing time for the resin dictates the rate of production and quality of product. This study aimed at investigating the effect of laminate thickness and quantity of catalyst on the curing time during the production of glass reinforced polyester composite. This research utilized unsaturated polyester resin, Methyl Ethyl Ketone Peroxide catalyst and E-glass fiber reinforcement for sample preparation. Different amount of catalyst ranging from 0.5% to 5% were dispensed on the polyester resin used in making laminate samples of thicknesses ranging from 1mm to 3mm and hand lay-up technique was used to produce sample panels. Curing time of the samples was determined according to the ASTM standards while data analysis was done using the statistical analysis software. Results showed that curing time reduced with increase in both laminate thickness and quantity of catalyst which could be attributed to heat evolved during polymer cross linking heat that was more pronounced in thicker laminate and higher catalyst levels. Statistical analysis showed that the catalyst level had a significant effect on curing of glass reinforced polyester composites compared with laminate thickness or an interaction between the two. It was concluded that the curing time of glass- reinforced polyester composites depended on the laminate thickness and quantity of catalyst.

Publisher

Granthaalayah Publications and Printers

Reference13 articles.

1. Abdullah, E. T. (2013).. A Study of Bending Properties of Unsaturated Polyester/Glass Fiber Reinforced Composites. Journal of Al-Nahrain University-Science, 16, 3: 129-132.

2. Bledzki, A. and Gassan, J. (2008). Composites Reinforced with Cellulose Based Fibres. Journal on Progress in Polymer Science, 24: 221-274.

3. EL-Wazery, M., EL-Elamy, M and Zoalfakar, H (2017). Mechanical Properties of Glass Fiber Reinforced Polyester Composites International Journal of Applied Science and Engineering 2017. 14, 3: 121-131

4. Composites of poly(vinyl chloride) and wood fibers. Part II: Effect of chemical treatment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3