PREDICTIVE ANALYTICS OF ACADEMIC PERFORMANCE OF SENIOR HIGH SCHOOL (SHS) STUDENTS: A CASE STUDY OF SUNYANI SHS

Author:

Adjei-Pokuaa HenriettaORCID,F. Adekoya AdebayoORCID

Abstract

Due to the availability and increasing adoption of technology in learning management systems, online admission systems, school management systems, and educational databases have expanded in recent years. Motivation/Background: Literature shows that these data contain vital and relevant information that could be used to monitor and advise students’ so that their performance could be enhanced. In this study, the random forest algorithm is proposed to identify and examine the factors that influence students’ performance in WASSCE. Also, predict the future performance of students in WASSCE. Method: A total of one thousand five hundred and twenty students’ data were selected from Sunyani SHS. The results revealed that demographic data (age and gender) do not influence the performance of students’ in their final WASSCE. Results: However, an accuracy of 89.4% with error metrics (RMSE) 0.001639 and MAPE error of 0.001321 revealed that the proposed model could effectively predict the performance of students in the WASSCE.

Publisher

Granthaalayah Publications and Printers

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference40 articles.

1. Adejo, O. W., & Connolly, T. (2018). Predicting Student Academic Performance Using Multi-Model Heterogeneous Ensemble Approach. Journal Of Applied Research In Higher Education, 10(1), 61-75. Retrieved from https://doi.org/10.1108/JARHE-09-2017-0113

2. Agrawal, H., & Mavani, H. (2015). Student Performance Prediction Using Machine Learning. 4(03), 111-113. Retrieved from https://doi.org/10.17577/IJERTV4IS030127

3. Ahmed, A. B. E. D., & Ibrahim, S. E. (2014). Data Mining : A Prediction For Student's Performance Using Classification Method. World Journal Of Computer Application And Technology, 2(2), 43-47. Retrieved from https://doi.org/10.13189/wjcat.2014.020203

4. Analyticsvidhya.Com. (2010). Random Forest Algorithm. Retrieved from Https://Www.Google.Com/Imgres?Imgurl=Https%3A%2F%2Fwww.Analyticsvidhya.Com%2Fwp-Content%2Fuploads%2F2015%2F06%2Frandom-Forest7.Png&Imgrefurl=Https%3A%2F%2Fwww.Analyticsvidhya.Com%2Fblog%2F2015%2F06%2Ftuning-Random-Forest-Model%2F&Tbnid=Bldygobmf_Oqom&Vet=12ahukewibtpbop-_Qahvtlkqkhbfndnuqmygieguiarc3aq.I&Docid=Gp-

5. Attuquayefio, Niiboi, S., & Addo, H. (2014). Using The UTAUT Model To Analyze Students' ICT Adoption. International Journal Of Education & Development Using Information & Communication Technology, 10(3), 75-86. Retrieved from Http://Ezproxy.Usq.Edu.Au/Login?Url=Http://Search.Ebscohost.Com/Login.Aspx?Direct=True&Db=Ehh&AN=97923459&Site=Ehost-Live

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3