NEW TYPE OF GLUEING OF REDOX FLOW STACKS

Author:

Hickmann Thorsten,Venkatesan Prassad,Engelke Martin,Wai Nyunt,Mahlendorf Falko,Jasincuk Aleksej,Gundlapalli Ravendra,Bhattarai Arjun,Ranjan Ravi,Ghimire Purna C.

Abstract

For the energy transition to succeed, the growing amount of solar and wind power need to be stored for night-time or low-wind periods. Redox flow storage offers a good way of balancing out the fluctuations in renewable energies and is considered a promising energy storage system because it is potentially inexpensive and relatively easy to scale. However, the costs are still too high for this technology to be a resounding success. New manufacturing and joining technologies can help here. This will be demonstrated using the central element of the redox flow battery, the stack, as an example. Here, novel bonding ideas will be investigated and explained. The aim was to improve the contact between the gas diffusion fleece on the active side of the bipolar half plates and the current collector on the bipolar edge plates. A media and temperature-resistant adhesive was tested and tried out in different geometries.

Publisher

Granthaalayah Publications and Printers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3