Author:
Gupta Pawan Kumar,Waoo Akhilesh A.
Abstract
Seed yield prediction is crucial in modern agriculture, aiding farmers and stakeholders in making informed decisions regarding crop management, resource allocation, and harvest planning. Traditionally, seed yield prediction relied on empirical models and historical data, which often lacked accuracy and robustness, particularly in dynamic agricultural environments. However, with the advent of deep learning (DL) techniques, there has been a paradigm shift in seed yield prediction research, enabling the development of sophisticated models capable of analyzing complex spatial and temporal data with unprecedented accuracy.
Publisher
Granthaalayah Publications and Printers
Reference23 articles.
1. Sordello, R.; Villemey, A.; Jeusset, A.; Vargac, M.; Bertheau, Y.; Coulon, A.; Deniaud, N.; de Lachapelle, F.F.; Guinard, E.; Jactel, H. Conseils Méthodologiques pour la Réalisation D’une Revue Systématique à Travers L’expérience de COHNECS-IT. (2021).
2. Guoyang Zhao, Longzhe Quan, Hailong Li, Huaiqu Feng, Songwei Li, Shuhan Zhang, and Ruiqi Liu. 2021. The real-time recognition system of soybean seed full-surface defects based on deep learning. Comput. Electron. Agric. 187, 106230, May (2021).
3. Jun Zhang, Limin Dai, and Fang Cheng. 2021. Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network. J. Food Meas. Charact. 15, 1, 484–494 (2021).
4. Nambiema, A.; Fouquet, J.; Guilloteau, J.; Descatha, A. La revue systématique et autres types de revue de la littérature: Qu’est-ce que c’est, quand, comment, pourquoi? Arch. Des Mal. Prof. L’Environ. 2021, 82, 539–552. (2021)
5. Ferhat Kurtulmuş. 2020. Identification of sunflower seeds with deep convolutional neural networks. J. Food Meas. Charact. 0123456789 (2020).