OPTIMIZING CROP YIELD AND FERTILITY MANAGEMENT USING KNN AND ML

Author:

Waoo Akhilesh A.,Tiwari Meena

Abstract

Agricultural productivity and sustainability are critical concerns in modern farming practices. This study explores the application of machine learning algorithms, specifically K-Nearest Neighbors (KNN) and boosting, for optimizing crop yield and fertilizer management. By leveraging historical data on crop characteristics, soil properties, weather conditions, and fertilizer application, predictive models are developed to recommend crop varieties and optimal fertilizer strategies. The KNN algorithm facilitates the identification of similar historical cases to predict crop performance and fertilizer requirements for a given set of conditions. Additionally, boosting techniques enhance model performance by iteratively improving predictive accuracy. This research aims to provide farmers with data-driven insights to enhance decision-making, maximize crop yield, and minimize environmental impact through efficient fertilizer usage.

Publisher

Granthaalayah Publications and Printers

Reference18 articles.

1. Automated crop prediction based on efficient soil nutrient estimation using sensor network Lokesh. K, Shakti. J, Sneha Wilson, Tharini. M.S National Conference on Product Design (NCPD 2016), July 2016.

2. Jay Gholap, Anurag Ingole, Jayesh Gohil, Shailesh Gargade, Vahida Attar Soil Data Analysis Using Classification Techniques and Soil Attribute Prediction, 2012 Asian Journal of Computer Science and Information Technology.

3. Deepa V. Ramane, Supriya S. Patil, A D. Shaligram Detection of NPK nutrients of soil using Fiber Optic Sensor International Journal of Research in Advent Technology (E-ISSN: 2321-9637) Special Issue National Conference ACGT 2015, 13-14 February 2015.

4. Dilraj N, Rakesh K, Rahul Krishnan, Maneesha V Ramesh, A Low-Cost Remote Cardiac Monitoring Framework for Rural Regions, MOBIHEALTH 2015, October 14-16, London, Great Britain.

5. Karlos Alexi A. Raya, Jared Martin J. Cortez, SULTAN: An Application for Landslide Susceptibility Assessment and Site Mapping, 2016 7th International Conference on Information, Intelligence, Systems Applications (IISA).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3