PRODUCTION AND FUNGICIDAL ACTIVITY ASSESMENT OF WOOD-WASTE LIQUID SMOKE

Author:

Rahmat Budy,Natawijaya Dedi,Surahman Endang

Abstract

Liquid smoke is known to contain compounds that can control plant disease pathogens. This study aims to produce wood-waste liquid smoke and determine its effectiveness as a fungicide on plant pathogens. This research was conducted in two experimental stages, namely: (i) in vitro test as a preliminary test of the effectiveness of teak waste liquid smoke at concentrations of 0, 0.5, 1, 1.5, 2, and 2.5%; and (ii) in vivo test was arranged in randomized block design consisting of seven levels of liquid smoke concentration, namely 0, 1, 2, 3, 4, 5, and 6%, each of which was repeated four times. The results showed that the pyrolysis of 1 kg of wood waste was produced with the proportions of liquid smoke, charcoal and tar, respectively: 312 mL, 31 g, 367 g and the uncondensed gases. Treatment of liquid smoke in the in vivo test showed that a concentration of 1 to 2.5% liquid smoke was able to suppress the growth of the pathogenic fungus Sclerotium rolfsii 100%. The treatment of liquid smoke in the in vivo test showed an effect on inhibition of the growth diameter of fungal colonies, suppressing the disease occurance, and suppressing the lesion diameter.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Reference16 articles.

1. Generation of Wood-waste Vinegar and Its Effectiveness as a Plant Growth Regulator and Pest Insect Repellent

2. Mahogany Wood-Waste Vinegar as Larvacide for Spodoptera litura

3. The Effectiveness of Teak Wood-Sawdust Liquid Smoke and Areca-Nut Extract as a Pesticide on Pomacea canaliculata

4. Setiawan, W., Effect of coconut shell liquid smoke on soft rot pathogens (Rhizopus stolonifer) in strawberries (Fragaria x ananassa), Thesis. Agrotechnology Study Program, Faculty of Agriculture, Siliwangi University, Tasikmalaya. 2015

5. Wagini, R., and Sukaryono, S. Physical characteristics and content of teak wood powder liquid smoke as a source of biofuel energy, Indonesian Journal of Physics, 8, 2009, 1-15.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3