INTRODUCING IN VITRO EXPERIMENTS OF OXYGEN BUBBLES SHOCKWAVES TRIGGERING INTRACELLULAR LIPIDS LUMINESCENCE: IMPLICATIONS IN CANCER ETIOLOGY

Author:

A. Abraham

Abstract

Background The main purpose of this manuscript is to introduce a mechanism supporting a previously hypothesized factor in cancer origin, where endogenous energy emission during cell respiration was identified as additional factor in cancer origin. Recent published reports identify the pressure profile of shockwaves as causing lipid droplets membrane deformation. Lipid metabolism has been highlighted to have a key role in cancer metabolism, and metastasis; for example, several publications have suggested targeting lipid metabolism of cancer cells as a strategy to control metastasis. New studies have revealed that lipid layers are responsible for the storage and discharge of static electricity. This manuscript introduces shockwaves from oxygen bubbles bursts as a mechanism causing intracellular lipids discharge or static electricity. The effect causes shape changes of lipid droplets up to a light emission stage. Materials and Methods Cheek cells intracellular material, including DNA strands and lipid droplets were precipitated in a test tube by following written instructions on DNA precipitation published online by The University of Michigan. The DNA precipitate was transferred onto a clean glass slide and covered by a similar one and dubbed a sandwich (SDW).  A slide assembly was developed where the effect of oxygen bubbles cavitation-induced shockwaves on the trapped DNA precipitate and lipid droplets were recorded. Microphotographs and video recordings were stored in a computer via a video-microscope. Results Lipid droplets exposed to prolonged shockwaves energy were documented to undergo recurrent expanding architectural deformation up to a final contracting phase where light was emitted.  Conclusions Intracellular lipid droplets are ubiquitously present in cells; and recent research has shown their expanded roles in cellular signaling in both mitotic and non-mitotic cells. In cancer, one highlighted key role is the potential of lipid metabolism in metastatic colonization. Data introduced in this manuscript demonstrates a direct consequence of ROS (H2O2) decomposition (via oxygen bubbles bursts) as a trigger for lipid intracellular droplets emission of light radiation, thus supporting a previously proposed biophysical mechanism in cancer origin.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3