OPTIMAL ENERGY MANAGEMENT IN MICROGRIDS CONSIDERING SUPPLY DEMAND RATE AND BATTERY DISCHARGE DEPTH

Author:

Terkes Musa,Demirci Alpaslan

Abstract

Integrating solar energy with battery energy storage systems (BESS) is critical in sustainable development plans and carbon neutrality goals. Can the energy exchange between supply and demand offer hope via effective management of BESS operations? How will the depth of discharge in microgrids affect individual BESS prosumers? Motivated by such questions, this study determines the minimum energy costs and optimal energy management considering the BESS discharge depth for industrial prosumers with different PV power production to electricity demand ratios. In addition, the impact of Epv/Eload and depth of discharge on individual PV-BESS microgrid prosumers is evaluated annually from a technical, economic, and environmental perspective. Moreover, considering the negative impact of the self-consumption rate (SCR) on the low voltage distribution network (overvoltage, power loss, etc.), unfavorable depth of discharge thresholds and Epv /Eload are determined. The optimization framework is built in Python Gurobi, and Mixed Integer Linear Programming solves the complex problem. The results show that a higher Epv /Eload can reduce the cost of energy (COE) by up to 84.1% and increase the renewable fraction (RF) and electricity sales revenues by up to 61% and up to 570.25 $/yr. It also emphasizes that for Prosumer 5, with the highest Epv /Eload (176.5%), each depth of discharge is not feasible due to SCR. In contrast, a higher depth of discharge can increase CO2 reduction by up to 4.45 tons/yr and thus provide additional revenues of up to 197.41 $/yr. Evaluating BESS operations in microgrid energy management will help many stakeholders determine reliable investments and help in the planned transition to clean energy.

Publisher

Granthaalayah Publications and Printers

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3