LUNG CANCER DETECTION TECHNIQUE BASED ON SURF DESCRIPTOR AND KNN ALGORITHMS

Author:

Hussein Karim,Ahmed Dalia Shihab

Abstract

In this century, lung cancer is undoubtedly one of the major serious health problems, and one of the leading causes of death for women and men worldwide. Despite advances in treating lung cancer with unprecedented products of pharmaceutical and technological advances, mortality and morbidity rates remain a major challenge for oncologists and cancer biologists. Thus, there is an urgent need to provide early, accurate, and effective diagnostic techniques to improve the survival rate and reduce morbidity and mortality related to lung cancer patients. Therefore, in this paper, an effective lung cancer screening technique is proposed for the early detection of risk factors for lung cancer. In this proposed technique, the powerful acceleration feature Speeded up robust feature (SURF) was used to extract the features. One of the machine learning methods was used to detect cancer by relying on the k nearest neighbor (KNN ) method, where the experimental results show an effective way to discover SURF features and tumor detection by relying on neighborhoods and calculating the distance using KNN. As a result, a high system sensitivity performance success rate of 96% and a system accuracy of 99% has been achieved.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3