EVIDENCE OF HUMAN INTER-TISSUE BIOELECTROMAGNETIC TRANSFER: THE HUMAN BLOOD TISSUE INTRINSIC BIOELECTROMAGNETIC ENERGY TRANSFERRING ONTO A MINIORGAN

Author:

Embi Abraham A.ORCID

Abstract

Basically the human hair consists of a follicle a.k.a root penetrating the skin and an outer skin structure commonly called the shaft. The hair follicle has been classified as a miniorgan having its own cells divisions; aging stages and also demonstrated to emit electromagnetic radiation. The intent of this manuscript is to demonstrate via in vitro experiments evidence of human inter-tissue electromagnetic energy transfer through a glass slide, namely from human blood tissue to the previously described miniorgan or follicle.  The mechanism behind this new finding was possible due to the introduction in 2015 of a tabletop optical microscopy method designed to display plants and animal tissue electromagnetic energy emissions. Essential to present finding is the described property of anisotropic crystals of full absorption of incoming electromagnetic radiation waves. K3Fe is an anisotropic crystal. For example, a single layer human blood smear was sandwiched (SDW) by a second glass slide. On the top slide of the SDW, a freshly plucked in toto human hair was then covered by drops diluted K3Fe. Control experiments had repeatedly shown orderly semicircular periodic crystals of K3Fe triggered by the electromagnetic waves emitted by the hair follicle. Prior experiments by this author, have hinted at a “bioelectromagnetic cross-talk” between the follicle and blood. This was seen when there was physical contact between the follicle and blood drops on a glass slide. In the present experiments there is no direct tissue contact, the energy is transmitted through a 1 mm glass barrier. The data herein presented introduces Bioelectromagnetic Fields (BEMFs) energy from human blood onto a miniorgan. This energy is shown penetrating a 1 mm glass slide barrier. Further research is warranted to assess the physiological implications of the human blood tissue as a molecular and BEMFs energy source.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Reference11 articles.

1. Schneider, M. R., Schmidt-Ullrich, R., & Paus, R. (2009). The hair follicle as a dynamic miniorgan. Current biology: CB, 19(3), R132–R142. https://doi.org/10.1016/j.cub.2008.12.005

2. Malmivuo, Jaakko; Robert Plonsey (1994) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. New York: Oxford University Press. (1994) ISBN 978-0195058239.

3. Corsini E, Acosta V, Baddour N, Higbe J, Lester B, Licht P, Patton B, Prouty M, Budker D. (2011) Search for plant biomagnetism with a sensitive atomic magnetometer.J Appl Physics. 109: 07470-1-5

4. Scherlag BJ, Huang B, Zhang L, Sahoo K, Towner R, Smith N, Embi AA, Po SS. Imaging the Electromagnetic Field of Plants (Vigna radiata) Using Iron Particles: Qualitative and quantitative correlates. Journal of nature and Science; (2015) 1: e61.

5. Embi AA, Jacobson JI, Sahoo K, BJ. (2015). Demonstration of Inherent Electromagnetic Energy Emanating from Isolated Human Hairs. Journal of Nature and Science. Jan 1(3): e55.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. INTRODUCING HYDROCOLLOID WOUND DRESSING ENERGY DISRUPTING HUMAN TISSUE METABOLISM;International Journal of Research -GRANTHAALAYAH;2022-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3