COMPARISON OF FORGING LOAD, MATERIAL FLOW AND PRESSURE DISTRIBUTION OF THE UNI-DIRECTIONAL, BI- DIRECTIONAL AND TWO-STEP FORGING PROCESSES

Author:

Eyercioglu Omer,Tas Gulaga

Abstract

Because of high productivity, closer dimensional tolerances, and minimal material waste precision forging (net or near net shape) processes have been used for manufacturing automobile components. The primary disadvantage of precision forging is the encountered higher tool stresses due to applied higher forging loads. Thus, forging load reduction is a higher priority in precision forging in terms of energy consumption and cost because higher loads required higher investment and higher energy consumption. Forging load is affected by several parameters such as temperature, material flow, the geometry of the billet, and punch movement. In this study, forging load, material flow, and normal pressure distribution in the forged part were investigated considering uni-directional, bi-directional, and two-step forging processes. FEM simulations were performed by using a solid cylindrical billet. To perform FEM simulations, the finite element analysis package (DEFORM 2D) was used. Also, experimental studies of the FEM models were performed. For bi-directional and step-forging experimental studies, a double-acting servo press was used because the movement of the top and bottom punch can be controlled accurately. Then the results of FEM and experimental studies were compared with each other. The results of the FEM simulations and experimental studies show two-step forging offers lower forging load and energy consumption whereas the uni-directional closed die forging process needs higher load and energy consumption

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3