Abstract
The aim of this study is to perform the molecular docking, identifying the drug likeness, ADME properties of drugs, Ligand-Protein interactions using different softwares. Due to the excess activity of Acetylcholinesterase, plaque formation and tau protein aggregation in the brain is the main cause for the Alzheimer’s disease. The interaction of Donepezil, Rivastigmine and Chlorzoxazone against AChE protein crystal structure (4EY5, 4EY6, 4EY7) using molecular docking were analyzed. Docking results of Rivastigmine and Chlorzoxazone were compared with Donepezil (widely used drug for Alzheimer’s disease) to identify the binding affinity. To verify whether Chlorzoxazone could act similarly as effective drug of Donepezil and also finding in which protein structure, ligands could bind effectively were employed using BIOVIA Discovery Studio software. Among those ligands interaction with all protein structure, 4EY7 on Rivastigmine (-7.1 kcal/mol) exhibits maximum binding affinity. The interactions of three ligands were compared with one another, in that Hydrogen bond formation of Chlorzoxazone and Donepezil with 4EY6 and 4EY7 interacting the similar aminoacids residues (4EY6-ARG165; 4EY7-ASP74) were studied using insilico studies .
Publisher
Granthaalayah Publications and Printers
Reference26 articles.
1. Sheikh Arslan sehgal, Mirza A.Hammad , Rana Adnan Tahir, Hafiza Nisha Akram and Faheem Ahmad - Current therapeutics molecules and targets in Neurodegenerative disease based on In-silico drug design. 2018, 16, 649-663.
2. Kaliappan Ganesan - (Docking study of Benzothiazole – Piperazines: Ache Inhibitors for Alzheimer disease. 2017, 19, Pages: 103-107.
3. Shivani kumar, Suman Chowdhury and Suresh kumar. In-silico repurposing of antipsychotic drugs for Alzheimer disease. 2017, 18;76.
4. Chaudhary A, Maurya PK, Yadav BS, Singh S, Mani A. Current therapeutic Targets for Alzheimer's Disease. 2018, 3:74-84.
5. Martyn JAJ, Fagerlund MJ, Eriksson LI, Basic principles of neuromuscular transmission, Anaesthesia, 64, 2009, 1-9.
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献