TWO STAGE ON OFF KEYING CLASS A RF POWER AMPLIFIER IN 0.18μm CMOS TECHNOLOGY

Author:

Senadeera P.M.,Xie ZhijianORCID,Dogan Numan S.

Abstract

A novel architecture for the On Off Keying (OOK) modulator with high gain and high data rate power amplifier (PA) operating at 11.6 GHz IBM 0.18-µm RF CMOS technology is presented for a X-band passive RFID tag. Currently used low frequency switching techniques such as multiplexers were not functioning in the high frequency X-band architectures. In this novel approach OOK modulator with power amplifier, a CMOS switch was used to transmit ‘1’ and ‘0’ coming from the digital signal unlike in the existing low frequency architectures. Both the load and driver in this proposed PA were class A operation supplied by a single ended 1.83V source. The important design considerations include output power, 1 dB compression point and linearity. The fabricated results of the amplifier have a 1 dB compression point of 1.2 dBm and input power of 5.19 dBm at 9.2 GHz.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Reference8 articles.

1. D. C. Daly and A. P. Chandrakasan, "An energy-efficient OOK transceiver for wireless sensor networks," IEEE Journal of Solid-State Circuits, vol. 42, pp. 1003-1011, 2007.

2. T. V. F. Abaya and M. D. Rosales, "10 Ghz twostage class a rf power amplifier in a 0. 25/lm cmos process," in Progress in Electromagnetics Research Symposium, 2008, pp. 211-215.

3. A. Sayed and G. Boeck, "Two-stage ultrawide-band 5-W power amplifier using SiC MESFET," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 2441-2449, 2005.

4. B. Razavi and R. Microelectronics, "Vol. 1," ed: Prentice Hall, New Jersey, 1998.

5. A. V. Vasylyev, P. Weger, W. Bakalski, and W. Simbuerger, "17-GHz 50-60 mW power amplifiers in 0.13-μm standard CMOS," IEEE microwave and wireless components letters, vol. 16, pp. 37-39, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3