STABILITY ANALYSIS OF ROCK BLOCKS WITH ENTIRE SPHERE STEREOGRAPHIC PROJECTION BASED ON THE BLOCK THEORY: A CASE STUDY FOR A TUNNEL ENTRANCE PROJECT

Author:

Mboussa Djohn Josia Weaver,Sun Shulin,Joseph Paul Nkombe,Zhang Yan

Abstract

This paper presents a static equilibrium kinematic analysis of rock performed in the tunnel entrance project using entire sphere stereographic projection under block theory. The objective of this study is to improve the predictive analysis of rock masses in terms of stability in rock masses area. Different key blocks with failure modes are determined. The conventional upper hemisphere stereographic projection is also employed for comparative analysis. Based on the findings, it was concluded that the planar failure is not probable in the case of the kinematic and block theory method in the tunnel entrance area. However, the wedge failure is more probable in both cases of analysis and the number of possible slide blocks in the case of kinematic analysis was found to be less than in the case of block theory; In these conditions, the support system should be provided for the reasons of safety. The comparative analysis shows that the results of block theory analysis are close to reality and provide more precision on the stable and unstable block than the results of kinematic analysis; Moreover, the block theory method using the entire sphere stereographic projection provides more precision on the sliding angle than the use of one sphere stereographic projection. Based on this study, the tunnel entrance is more stable for the dip slope face equal to 45 and not probable for slope face 60˚ and 85˚; but these results were limited in the case of stability analysis under gravitational loading.

Publisher

Granthaalayah Publications and Printers

Subject

Ocean Engineering

Reference21 articles.

1. Assessment of discontinuous rock slope stability with block theory and numerical modeling: a case study for the South Pars Gas Complex, Assalouyeh, Iran

2. Extended key block analysis for support design of blocky rock mass

3. Gischig V. S. (2011). Kinematic and Failure Mechanism of Randa Rock Slope Instability (Switzerland). Ph.D Thesis, ETH ZURICH, 217.

4. Goodman, R. E., Shi, G. (1985). Block Theory and Its Application to Rock Engineering. Prentice-Hall Inc., New Jersey, USA.

5. Rock Slope Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3