Investigation of the Static and the Dynamic Behaviour of Stress-Ribbon Footbridges under Pedestrian Actions

Author:

Georgiadis Konstantinos1,Ruiz-Teran Ana M.2,Stafford Peter J.3

Affiliation:

1. Bridge Engineer in ARUP, PhD, Imperial College London, UK

2. Senior Lecturer in Bridge Engineering, Imperial College London, UK

3. Reader in Seismology & Earthquake Engineering, Imperial College London, UK

Abstract

<p>Stress-ribbon footbridges promote the axial behaviour and allow designers to take advantage of the entire sectional areas reducing the required construction materials. In addition to their high structural efficiency and sustainability, they also possess a number of other advantages such as lightness, relatively easy construction possibilities, strong aesthetic characteristics with small impact to the landscape, and minimum maintenance requirements. As a result, they present an attractive proposal for covering medium to large spans in urban and remote places. Whilst currently the structural behaviour of stress-ribbon footbridges has been investigated, more attention has been paid on their static response. Nevertheless, their dynamic response under pedestrian actions might be more critical for their design, as significant vibrations can be generated during service, compromising users’ comfort. This paper presents an investigation of a benchmark stress-ribbon footbridge under static and dynamic pedestrian actions. The influence of geometric non-linearity in the static and the dynamic response was examined. Results show that inclusion of geometric non-linearity affects significantly the stiffness of the bridge and consequently it is important for predicting its behaviour. Finally, based on a parametric study it was found that, increasing the stress-ribbon thickness is an effective way of reducing vibrations and increase comfort for the bridge users.</p>

Publisher

Asociación Española de Ingeniería Estructural

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3