Privacy-aware Decentralized and Scalable Access Control Management for IoT Environment

Author:

Abrar O. Alkhamisi and Fathy Alboraei Abrar O. Alkhamisi and Fathy Alboraei

Abstract

In recent years, the Internet of Things (IoT) plays a vital role in our daily activities .Owing to the increased number of vulnerabilities on the IoT devices, security becomes critical in the untrustworthy IoT environment. Access control is one of the top security concerns, however, implementing the traditional access control mechanisms in the resource-constrained nature of the IoT devices is a challenging task. With the emergence of blockchain technology, several recent research works have focused on the adoption of blockchain in IoT to resolve the security concerns. Despite, integrating the blockchain in the resource-constrained IoT context is difficult. To overcome these obstacles, the proposed work presents a privacy-aware IoT security architecture to ensure the access control based on Smart contract for resource-constrained and distributed IoT devices. The design of the proposed architecture incorporates three main components such as the contextual blockchain gateway, decentralized revocation manager, and non-interactive zero-knowledge proof based validation. By modeling the contextual blockchain gateway, the proposed architecture ensures the dynamic authentication and authorization based on the contextual information and access policies. Instead of integrating the blockchain technology into resource-constrained IoT devices, the smart contract-based distributed access control system with the contextual blockchain gateway provides the scalable solution. With the association of decentralized revocation manager in the smart contract, it prevents the resource access from the unauthorized users by dynamically generating and updating the revoked user list of all the nodes in the smart contract. Moreover, the proposed architecture employs the non-interactive zeroknowledge proof cryptographic protocol to ensure the transaction privacy within the smart contract. Consequently, it maintains the trade-off between the transparency and privacy while ensuring the security for the distributed IoT environment.

Publisher

King Abdulaziz University Scientific Publishing Centre

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Patent Analysis on Big Data Projects;International Journal of Business Analytics;2022-01

2. BacS: A blockchain-based access control scheme in distributed internet of things;Peer-to-Peer Networking and Applications;2020-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3