Enhanced Host-Based Intrusion Detection Using System Call Traces

Author:

Yaqoob S. Ikram Yaqoob S. Ikram

Abstract

To detect zero-day attacks in modern systems, several host-based intrusion detection systems are proposed using the newly compiled ADFA-LD dataset. These techniques use the system call traces of the dataset to detect anomalies, but generally they suffer either from high computational cost as in window-based techniques or low detection rate as in frequency-based techniques. To enhance the accuracy and speed, we propose a host-based intrusion detection system based on distinct short sequences extraction from traces of system calls with a novel algorithm to detect anomalies. To the best of our knowledge, the obtained results of the proposed system are superior to all up-to-date published systems in terms of computational cost and learning time. The obtained detection rate is also much higher than almost all compared systems and is very close to the highest result. In particular, the proposed system provides the best combination of high detection rate and very small learning time. The developed prototype achieved 90.48% detection rate, 22.5% false alarm rate, and a learning time of about 30 seconds. This provides high capability to detect zero-day attacks and also makes it flexible to cope with any environmental changes since it can learn quickly and incrementally without the need to rebuild the whole classifier from scratch.

Publisher

King Abdulaziz University Scientific Publishing Centre

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3