Satisfiability in Big Boolean Algebras via Boolean-Equation Solving

Author:

Ali M. Ali Rushdi Ali M. Ali Rushdi

Abstract

This paper studies Satisfiability (SAT) in finite atomic Boolean algebras larger than the two-valued one B2, which are named big Boolean algebras. Unlike the formula ݃(ࢄ (in the SAT problem over B2, which is either satisfiable or unsatisfiable, this formula for the SAT problem over a big Boolean algebra could be unconditionally satisfiable, conditionally satisfiable, or unsatisfiable depending on the nature of the consistency condition of the Boolean equation {݃(ࢄ = (1}, since this condition could be an identity, a genuine equation, or a contradiction. The paper handles this latter SAT problem by using a conventional method and a novel one for deriving parametric general solutions, and subsequently utilizing expansion trees for generating all particular solutions of the aforementioned Boolean equation. Each of these two methods could be cast in pure algebraic form, but becomes much easier to visualize and comprehend when presented via the natural map of a big Boolean algebra, which (for historical reasons) is called the variable-entered Karnaugh map (VEKM). In the classical method, the number of parameters used is minimized and compact solutions are obtained. However, the parameters belong to the underlying big Boolean algebra. By contrast, the novel method does not attempt to minimize the number of parameters used, as it uses independent parameters belonging to the two-valued Boolean algebra B2 for each asserted atom in the Boole-Shannon expansion of the formula ݃(ࢄ .(Though the method produces non-compact expressions, it is much quicker in generating particular solutions. The two methods are demonstrated via two detailed examples.

Publisher

King Abdulaziz University Scientific Publishing Centre

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Feature Selection-based Machine Learning Comparative Analysis for Predicting Breast Cancer;Applied Artificial Intelligence;2024-04-10

2. Atomic Formulation of the Boolean Curve Fitting Problem;International Journal of Mathematical, Engineering and Management Sciences;2022-10-01

3. Digital Circuit Design Utilizing Equation Solving over ‘Big’ Boolean Algebras;International Journal of Mathematical, Engineering and Management Sciences;2018-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3