Affiliation:
1. Branch “Institute of Atomic Energy” RSE NNC RK
2. Branch “Institute of Atomic Energy” RSE NNC RK; Sarsen Amanzholov east Kazakhstan state university
3. Branch “Institute of Atomic Energy” RSE NNC RK; Tomsk Polytechnic University
Abstract
This article describes experimental investigations to determine the corrosion compatibility of candidate matrix materials of a capillary-porous structure (CPS) with a liquid tin-lithium alloy at high temperatures. The studies were conducted with the Sn75-Li25 alloy and samples of 12Ch18Ni10Ti grade austenite stainless steel, VEL-3 grade vanadium, and TT grade tantalum. Experiments on the interaction of a liquid tin-lithium alloy with candidate samples of the CPS matrix at high temperatures were carried out on an experimental TiGrA setup based on a TGA/DSC 3+ thermogravimetric analyzer. The paper provides a description of the methodology and conditions for conducting high-temperature corrosion tests. In the course of this work, experiments were carried out to study the compatibility of a tin-lithium alloy in the liquid phase with a stainless steel, vanadium and tantalum samples in the temperature range from 600 ℃ to 1000 ℃. Based on obtained results, the thermal effects of the processes occurring as a result of the interaction of the alloy with a candidate materials of the CPS matrix were determined. As a result of the analysis of the results obtained it has been revealed that at interaction of the studied materials with liquid tin-lithium alloy Sn75-Li25 at high temperatures complex physical and chemical processes take place, such as: selective dissolution of components by liquid alloy (solvent); penetration of component of liquid alloy (tin) into stainless steel depth; mass transfer of dissolved metals from solid metal into liquid.
Publisher
Republican State Enterprise "National Nuclear Center of the Republic of Kazakhstan"