OBTAINING NANOCELLULOSE FROM BIOMASS AND STUDY OF THEIR PHYSICOCHEMICAL PROPERTIES

Author:

Abdrakhmanova L. E.1ORCID,Rakhimova B. U.2ORCID,Altynov Y. A.1ORCID,Zhantikeyev U. Ye.1ORCID,Bexeitova K. S.3ORCID,Azat S.1ORCID,Kudaibergenov K. K.1ORCID,Dauletbay A.2ORCID,Nazhipkyzy M.2,Mohammad K.4

Affiliation:

1. Satbayev University

2. Al-Farabi Kazakh National University

3. Satbayev University; Al-Farabi Kazakh National University

4. School of Engineering and Technology, Sunway University

Abstract

This work describes the production of nanocellulose by removing lignin from biomass by the peroxide method in the presence of an H2SO4 catalyst and the study of its physicochemical properties. The structure of cellulose and modified nanocellulose was studied using Raman spectroscopy, IR (infrared) spectroscopy, X-ray diffraction, and SEM (scanning electron microscopy). The resulting increase in the crystallinity of NFC (nanofibrous cellulose) was confirmed by X-ray diffraction analysis. This indicates that cellulose was associated with the removal of amorphous parts. As a result of X-ray diffraction, overlap on NFC radiographs occurred even in the area of intense lines. In the sample obtained by IR spectroscopy, the presence of groups (3413.12 cm−1; 2918.34 cm−1; 1373.30 cm−1; 617.52 cm−1) corresponding to the nature of NFC was detected. Strong absorption at 1429.8 cm−1 in the spectrum of CMC (carboxylmethylcellulose) revealed –COOH groups, indicating successful carboxylation of cellulose. The morphological surface, average particle size and structure of the samples were studied. As a result of a comparative analysis of morphological structures, an ordered filamentous structure of nanofibrous cellulose characteristic of fibers and a porous structure of CMC with a modified surface and uneven fibers were revealed. The developed method for producing modified cellulose from biomass does not require multi-stage processing compared to traditional methods and is safe for the environment. It has been shown that it is possible to obtain high-quality cellulose in one stage without the use of reagents containing sulfur and chlorine, high pressure and high water consumption.

Publisher

Republican State Enterprise "National Nuclear Center of the Republic of Kazakhstan"

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3