KINETIC AND THERMODYNAMIC CHARACTERISTICS OF THE POTASSIUM HEXATIONOFERRATE (III) DECOMPOSITION CATALYTIC REACTION IN THE PRESENCE OF COMPOSITE TRACK-ETCHED MEMBRANES

Author:

Altynbaeva L. Sh.1,Mendibaeva A. Zh.2,Aimanova N. A.1,Nurmakhan A. E.1,Dzhakupova Zh. E.3,Tuleuov B. I.4,Mashentseva A. A.1

Affiliation:

1. Institute of Nuclear Physics of the Republic of Kazakhstan; L.N. Gumilyov Eurasian National University

2. Institute of Nuclear Physics of the Republic of Kazakhstan; Karaganda Technical University

3. L.N. Gumilyov Eurasian National University

4. Karaganda Technical University

Abstract

The kinetic and thermodynamic parameters of the decomposition of an inorganic wastewater pollutant such as potassium hexacyanoferrate (III) (PHCF) in the presence of composite catalysts based on polymer track membranes (TeMs) and copper nanoparticles (NPs) was studied. Composite catalysts were prepared by electroless template synthesis using a nontoxic reducing agent - ascorbic acid. A systematic study of the process of electroless plating of copper NPs was carried out depending on pH, deposition time, and the number of activations of the polymer template. The structure of the porous composite catalysts was investigated by scanning electron microscopy and X-ray diffractometry. The catalytic properties of the obtained composites were examined in the temperature range of 10-25 °C for a series of samples synthesized with different deposition times. It was shown that the kinetics of the decomposition reaction of PHCF corresponds to the pseudo first-order reaction. Such thermodynamic characteristics as energy, entropy and enthalpy of activation are calculated. The stability of the properties of catalysts has been studied.

Publisher

Republican State Enterprise "National Nuclear Center of the Republic of Kazakhstan"

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3