Affiliation:
1. Makerere University
2. McMaster University
3. Max Planck Institute for Software Systems
Abstract
Let $ (P_n)_{n\ge 0}$ be the sequence of Perrin numbers defined by ternary relation $ P_0=3 $, $ P_1=0 $, $ P_2=2 $, and $ P_{n+3}=P_{n+1}+P_n $ for all $ n\ge 0 $. In this paper, we use Baker's theory for nonzero linear forms in logarithms of algebraic numbers and the reduction procedure involving the theory of continued fractions, to explicitly determine all Perrin numbers that are concatenations of two distinct repeated digit numbers.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pell and Pell-Lucas numbers which are concatenations of three repdigits;Indian Journal of Pure and Applied Mathematics;2024-02-22
2. Padovan numbers as difference of two repdigits;Indian Journal of Pure and Applied Mathematics;2023-12-22