MegaSyn: Integrating Generative Molecule Design, Automated Analog Designer and Synthetic Viability Prediction

Author:

Urbina Fabio1,Lowden Christopher2,Culberson Christopher3,Ekins Sean1ORCID

Affiliation:

1. Collaborations Pharmaceuticals, Inc.

2. Workflow Informatics Corporation

3. Workflow Informatics Corporations

Abstract

Drug discovery is a multi-stage process, often beginning with the identification of active molecules from a high-throughput screen or machine learning model. Once structure activity relationship trends become well established, identifying new analogs with better properties is important. Synthesizing these new compounds is a logical next step, and is key to research groups that have a synthetic chemistry team or external collaborators. Generative machine learning models have become widely adopted to generate new molecules and explore molecular space, with the goal of discovering novel compounds with desires properties. These generative models have been composed from recurrent neural networks (RNNs), Variational Autoencoders (VAEs), and Generative Adversarial Networks (GANs) and are often combined with transfer learning or scoring of physicochemical properties to steer generative design. While these generative models have proven useful in generating new molecular libraries, often they are not capable of addressing a wide variety of potential problems, and often converge into similar molecular space when combined with a scoring function for desired properties. In addition, generated compounds are often not synthetically feasible, reducing their capabilities outside of virtual composition and limiting their usefulness in real-world scenarios. Here we introduce a suite of automated tools called MegaSyn representing 3 components: a new hill-climb algorithm which makes use of SMILES-based RNN generative models, analog generation software, and retrosynthetic analysis coupled with fragment analysis to score molecules for their synthetic feasibility. We now describe the development and testing of this suite of tools and propose how they might be used to optimize molecules or prioritize promising lead compounds using test case examples.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dual use of artificial-intelligence-powered drug discovery;Nature Machine Intelligence;2022-03-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3