Machine Learning Predictions of Drug Release from Polymeric Long Acting Injectables

Author:

Bannigan Pauric1,Häse Florian12,Aldeghi Matteo12,Bao Zeqing1,Aspuru-Guzik Alán123,Allen Christine1ORCID

Affiliation:

1. University of Toronto

2. Vector Institute

3. Canadian Institute for Advanced Research

Abstract

Machine learning is enabling leap-step advances in a number of fields including drug discovery and materials science. The current study explores the application of machine learning to address a critical challenge in pharmaceutical formulation development: the prediction of drug release profiles from polymer-based long-acting injectables. Long acting injectables are considered one of the most promising therapeutic strategies for the treatment of chronic diseases as they can afford improved therapeutic efficacy, safety, and patient compliance. The use of polymer materials in such a drug formulation strategy can offer unparalleled diversity owing to the ability to synthesize materials with a wide range of properties. However, the interplay between multiple parameters, including the physicochemical properties of the drug and polymer, make it near to impossible to predict the performance of these systems a priori. This results in a need to develop and characterize a wide array of formulation candidates through extensive and time-consuming in vitro experimentation. In this study, various neural network architectures are constructed and trained, resulting in accurate predictions of drug release profiles that agree with experimental data. The simplicity with which these broadly applicable machine learning models are identified, using a limited amount of training data, is evidence of the promising potential of data-driven approaches in advanced pharmaceutical formulation development.

Funder

Defense Advanced Research Projects Agency

Publisher

Cambridge University Press (CUP)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3