A Computational Study on the Ca2+ Solvation, Coordination Environment, and Mobility in Electrolytes for Calcium Ion Batteries

Author:

Biria Saeid1,Pathreeker Shreyas1ORCID,Hosein Ian D.1

Affiliation:

1. Syracuse University

Abstract

Calcium (ion) batteries are promising next-generation energy storage systems, owing to their numerous benefits in terms of performance metrics, low-cost, mineral abundance, and economic sustainability. A central and critical area to the advancement of the technology is the development of suitable eletrolytes that allow for good salt solubility, ion mobility, electrochemical stability, and reversible redox activity. At this time, the study of different solvent-salt combinations is very limited. Here, we present a computational study on the coordination environment, solvation energetics, and diffusivity of calcium ions over a range of pertinent ionic liquids, cyclic and acylic alkyl carbonates, and specific alkyl nitriles and alkyl formamides, using the salts calcium bis(trifluoromethylsulfonyl)imide (Ca(TFSI)2) and calcium perchlorate (Ca(ClO4)2). Key findings are that several solvents from different solvent classes present comparable solvation environments and mobilities. Ca(TFSI)2 is prefered over Ca(ClO4)2 owing to the former’s mix coordination of Ca2+ to O and N atoms. Ionic liquids with alkyl sulfonate anions provide better coordation over TFSI, which leads to greater diffusivity. Binary organic mixtures (carbonates) provide the best solvation of Ca2+, however, single organic solvents also provide good solvation, such as EC, THF and DMF, as well as some acyclic carbonates. Ion pairing with the salt anion is always present, but can be mitigated through solvent selection, which also correlates to greater mobility; however, there are examples in which strong ion pairing is not significantly adverse to diffusivity. The solvent incorporate into the solvation structure with binary organic mixtures correlates well with the solvation capabilities of the individual solvents. Finally, we show that ionic liquids (specifically alkyl imidazole (cation) alkyl sulfonate (anion) ionic liquids) do not decompose when coordinating at a Ca metal interface, which indicates its promising stability. Overall, this study contributes further generalized understanding of the correlation between solvent and salt and the resultant Ca2+ complexes and Ca2+ mobility in a range of electrolytes, and reveals a range of possible solvents suitable for exploration in calcium (ion) batteries.

Funder

National Science Foundation

Syracuse University

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3