Author:
QIAO YAO,ZHANG QIWEI,NAKAGAWA TROY,SALVIATO MARCO
Abstract
This work proposes an investigation on size effects in micro-scale splitting crack initiation and propagation and their consequences on the macro-scale structural behavior carbon-fiber reinforced polymers under transverse tension. Towards this goal, size effect tests were experimentally conducted on both notch-free [90]n composites and specimens with different notch types under three-point bending. The mechanical tests were followed by morphological studies to identify the micro-scale damage mechanisms and their evolution. The results clearly show that splitting crack initiation in the transverse direction of composites not only happens at the fiber/matrix interface but also in the matrix. Moreover, the subsequent development of these damage mechanisms can depend on the structure size. This interesting phenomenon inherently leads to size-dependent structural behavior which can be described through Baznt’s Size Effect Laws. This study on the splitting crack initiation and propagation can provide unprecedented information for the calibration and validation of micromechanical models for the damage behavior of fiber composites at the microscale.
Publisher
Destech Publications, Inc.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献