Author:
Sarman K.V.S.H. Gayatri,Madhu Tenneti,Prasad Mallikarjuna
Abstract
The brushless direct current (BLDC) motor drive is gaining popularity due to its excellent controllability and high efficiency. This paper introduces a fault diagnosis method for open circuit (OC) and short circuit (SC) BLDC motor drives using a hybrid classifier with hybrid optimization. Features such as current, voltage, speed, and torque are considered as the training data. The features are extracted by discrete wavelet transform (DWT) and then employed to train the classifiers to distinguish between fault types and values of response parameters using the support vector machine and Naive Bayes classifier (SVM-NB). To further improve the performance of the system, hybrid chaotic particle swarm optimization (CPSO) algorithms and teaching-learning-based optimization (TLBO) are used. This method is capable of detecting and recognizing the type of faults in the BLDC motor. The developed approach is implemented on the MATLAB/SIMULINK for OC, SC, and no-fault conditions. These hybrid algorithms provide better performance compared to existing approaches with respect to sensitivity, accuracy, and specificity. This improved model achieves about 98.8% accuracy.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Emotion Analysis of Tweets;2023 International Conference on Computer Communication and Informatics (ICCCI);2023-01-23
2. Identification of Gender and Age using Classification and Convolutional Networks;2023 International Conference on Computer Communication and Informatics (ICCCI);2023-01-23