Author:
Srisiriwanna Teeradej,Konghirun Mongkol
Abstract
The cogging torque is undesirable effect in the brushless dc (BLDC) motor, causing vibration and audible noises. It arises from the rotor permanent magnet interacting with the steel teeth on the stator. This paper studies the various reduction methods of cogging torque when designing a BLDC motor. These methods can be categorized according to three parts of motor structure, i.e., air gap length, rotor and stator parts. The finite element method magnetic (FEMM) is primarily used to analyze the cogging torque among these different reduction methods. In this paper, a 4-pole, 24-slot BLDC motor is focused with variations of air gap length, rotor, and stator parts in order to study its cogging torque reductions. Finally, the FEMM simulation results are presented to validate these reduction methods.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cogging Torque Minimization of Axial Flux-Switching Permanent Magnet Machine via Rotor Teeth Skewing;2023 24th International Conference on the Computation of Electromagnetic Fields (COMPUMAG);2023-05-22