BlockVOTE : An Architecture of a Blockchain-based Electronic Voting System

Author:

Angsuchotmetee Chinnapong,Setthawong Pisal

Abstract

Voting is an essential activity in the modern democracy. To facilitate the voting process, there are several attempts on proposing an electronic voting system such that, the voting and tallying processes can be done efficiently and the results would be accountable to the public. To date, however, an online electronic voting system has been rarely adopted in practice due to the possibility of having the voting result tampered through vote-rigging or cyber-attacking. In 2009, the blockchain algorithm was proposed by Satoshi Nakamoto. Blockchain is a technique for recording transactions between self-auditing ledgers in an open, distributed, permanent, and verifiable manner. Even though blockchain was originally designed for a financial applications, it is possible to apply blockchain to other domains, including in the implementation of an online decentralized-based electronic voting system. In this study, the architecture of a blockchain-based electronic voting system, named \textit{BlockVOTE}, is proposed. The architecture design and all related formal definitions are given. To validate the proposal, two BlockVOTE prototypes were implemented using two different blockchain application frameworks. The performance analysis of both versions of the prototypes are given. The analysis of both technical and management aspects on the possibility of adopting the proposed decentralized voting system in an actual voting scenario is also given at the end of this study.

Publisher

ECTI

Subject

Electrical and Electronic Engineering,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Revolutionizing College Elections with a Secure Blockchain Voting Solution;2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA);2023-10-07

2. Enhancing the Robustness of a Three-Layer Security Electronic Voting System Using Kerberos Authentication;ABUAD Journal of Engineering Research and Development (AJERD);2023-06-01

3. Blockchain-based system for e-voting using Blind Signature Protocol;2021 IEEE Global Communications Conference (GLOBECOM);2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3