Information Extraction Tasks based on BERT and SpaCy on Tourism Domain

Author:

Chantrapornchai Chantana,Tunsakul Aphisit

Abstract

In this paper, we present two methodologies to extract particular information based on the full text returned from the search engine to facilitate the users. The approaches are based three tasks: name entity recognition (NER), text classification and text summarization. The first step is the building training data and data cleansing. We consider tourism domain such as restaurant, hotels, shopping and tourism data set crawling from the websites. First, the tourism data are gathered and the vocabularies are built. Several minor steps include sentence extraction, relation and name entity extraction for tagging purpose. These steps are needed for creating proper training data. Then, the recognition model of a given entity type can be built. From the experiments, given review texts, we demonstrate to build the model to extract the desired entity,i.e, name, location, facility as well as relation type, classify the reviews or summarize the reviews. Two tools, SpaCy and BERT, are used to compare the performance of these tasks.

Publisher

ECTI

Subject

Electrical and Electronic Engineering,Information Systems and Management,Computer Networks and Communications,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning applied to tourism: A systematic review;WIREs Data Mining and Knowledge Discovery;2024-07-04

2. An automated information extraction system from the knowledge graph based annual financial reports;PeerJ Computer Science;2024-05-13

3. Natural Language Processing and Fiction Text: Basis for Corpus Research;RUDN Journal of Language Studies, Semiotics and Semantics;2024-03-15

4. Job Recommendation System based on Resume using Natural Language Processing and Distance-based Algorithm;2024 IEEE International Conference on Artificial Intelligence and Mechatronics Systems (AIMS);2024-02-21

5. Detecting Function Inputs and Outputs for Learning-Problem Generation in Intelligent Tutoring Systems;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3