Author:
Riyana Surapon,Sasujit Kittikorn,Homdoung Nigran
Abstract
Data utility and data privacy are serious issues that must be considered when datasets are utilized in big data analytics such that they are traded off. That is, the datasets have high data utility and often have high risks in terms of privacy violation issues. To balance the data utility and the data privacy in datasets when they are provided to utilize in big data analytics, several privacy preservation models have been proposed, e.g., k-Anonymity, l-Diversity, t-Closeness, Anatomy, k-Likeness, and (lp1, . . . , lpn)-Privacy. Unfortunately, these privacy preservation models are highly complex data models and still have data utility issues that must be addressed. To rid these vulnerabilities of these models, a new privacy preservation model is proposed in this work. It is based on aggregate query answers that can guarantee the confidence of the range and the number of values that can be re-identified. Furthermore, we show that the proposed model is more effcient and effective in big data analytics by using extensive experiments.
Subject
Electrical and Electronic Engineering,Information Systems and Management,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Model for Preserving Privacy Data in URL Query Strings;2024 10th International Conference on Engineering, Applied Sciences, and Technology (ICEAST);2024-05-01