The timing point of exercise intervention regulates neuropathic pain-related molecules in the ipsilateral dorsal root ganglion neurons after sciatic nerve injury

Author:

Cho Yeong-Hyun,Seo Tae-BeomORCID

Abstract

The purpose of this study was to determine whether the timing of treadmill exercise application can control expression levels of neuropathic pain- and regeneration-related proteins in the ipsilateral lumbar 4 (L4) to 6 (L6) dorsal root ganglion cells (DRG) after sciatic nerve injury (SNI). The experimental rats were randomly divided into five groups: the normal control, SNI+sedentary (IS), exercise+SNI (EI), SNI+exercise (IE), exercise+SNI+exercise (EIE) groups. The rats in exercise groups performed treadmill exercise at a speed of 8 m/min for 30 min once a day during 14 days before and/or after SNI. For investigating the expression of specific neuropathic pain and regeneration-related proteins in DRG, we prepared L4 to L6 DRG in the ipsilateral side. In the quantitative analysis, growth associated protein 43 (GAP-43) and brain-derived neurotrophic factor levels were further increased in the ipsilateral DRG at all treadmill exercise groups than those in IS group. In the histological findings, GAP-43 was qualitatively increased IE and EIE groups than IS group at DRG. Wnt3a and β-catenin were dramatically downregulated in EIE and IE groups than IS groups. In addition, nuclear factor kappa-light-chain-enhancer of activated B cells and tumor necrosis factor-α were significantly decreased in IE and EIE groups than IS group in the ipsilateral DRG. Our findings suggested novel information that regular low-intensity exercise before and/or after SNI might be a therapeutic and preventive approaches for relieving neuropathic pain and improving axonal elongation after peripheral nerve injury.

Funder

Ministry of Education

National Research Foundation of Korea

Publisher

Korean Society of Exercise Rehabilitation

Subject

Orthopedics and Sports Medicine,Physical Therapy, Sports Therapy and Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3