An experimental demonstration of level attraction with coupled pendulums

Author:

Lu Chenyang1,Turner Bentley1,Gui Yongsheng1,Burgess Jacob1,Xiao Jiang2,Hu Can-Ming1

Affiliation:

1. Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba , Canada R3T 2N2

2. Department of Physics and State Key Laboratory of Surface Physics, Fudan University , Shanghai 200433, China

Abstract

We have experimentally demonstrated dissipative coupling in a double pendulum system through observation, which shows three distinctly different patterns of motion over the accessible parameter space. The described dissipative coupling apparatus is easy to manufacture and budget-friendly. The theoretical calculations are also suitable for the undergraduate level. Our experiment can serve as a novel demonstration for ubiquitous dynamic coupling effects encountered in many disparate physical systems. Unlike the well-known spring-coupled pendulums, our experiment employs Lenz's effect to couple the pendulums through electromagnetic damping, which, to the best of our knowledge, has not been demonstrated in the classroom. Our pendulums exhibit level attraction behaviour between two modes, induced by the dissipative coupling. This stands in contrast to the traditionally taught concept of level repulsion (avoided crossing) with spring-coupled pendulums. This experiment showcases distinctly different time domain dynamics of the dissipatively coupled pendulums over the parameter space, characterized by different oscillation patterns, damping rates, and relative phase between the two pendulums, which is a valuable lesson elucidating the dynamics of synchronization in linear systems for undergraduate students.

Funder

Natural Sciences and Engineering Research Council of Canada

University of Manitoba

Publisher

American Association of Physics Teachers (AAPT)

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The dynamics of Lato Lato ball collisions;Physics Education;2024-07-02

2. Experimental observation of exceptional points in coupled pendulums;Journal of Sound and Vibration;2024-04

3. Synchronization of dissipatively coupled oscillators;Journal of Applied Physics;2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3