An introduction to the Markov chain Monte Carlo method

Author:

Wang Wenlong1

Affiliation:

1. College of Physics, Sichuan University, Chengdu 610065, China

Abstract

We present an intuitive, conceptual, and semi-rigorous introduction to the Markov Chain Monte Carlo method using a simple model of population dynamics and focusing on a few elementary distributions. We start from two states, then three states, and finally generalize to many states with both discrete and continuous distributions. Despite the mathematical simplicity, our examples include the essential concepts of the Markov Chain Monte Carlo method, including ergodicity, global balance and detailed balance, proposal or selection probability, acceptance probability, the underlying stochastic matrix, and error analysis. Our experience suggests that most senior undergraduate students in physics can follow these materials without much difficulty.

Funder

Young Scientists Fund

Publisher

American Association of Physics Teachers (AAPT)

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3