Balloon-borne two-channel infrared spectral photometer for observation of atmospheric greenhouse effect by undergraduates

Author:

Blanchard Gerard T.1,Adesina Fawaz A.1,Belkwell William Cole1,Dyess James R.1,Frabbiele Victoria A.1,McGibboney Conor S.1,Rumsey Ryan D.1

Affiliation:

1. Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana 70402

Abstract

We present a simple design of a balloon-borne infrared spectral photometer that can be built and used by undergraduate students to perform an experiment demonstrating the atmospheric greenhouse effect. The experiment demonstrates that the Earth radiates heat to space in the infrared region but that the radiation at the top of the atmosphere has a much lower effective radiation temperature than at the surface of the Earth, which is the essence of the greenhouse effect. The experiment also demonstrates that the greenhouse effect is much more pronounced in molecular absorption bands than in the so-called infrared window. The thrill of putting together a balloon experiment aside, students performing this experiment also gained experience in practical applications of Planck's law.

Publisher

American Association of Physics Teachers (AAPT)

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3