Affiliation:
1. Complutense University of Madrid, Madrid, Spain;
Abstract
Our first experience of dimension typically comes in the intuitive Euclidean sense: a line is one dimensional, a plane is two dimensional, and a volume is three dimensional. However, following the work of Mandelbrot, systems with a fractional dimension, “fractals,” now play an important role in science. The novelty of encountering fractional dimension, and the intrinsic beauty of many fractals, has a strong appeal to students and provides a powerful teaching tool. I describe here a low-cost and convenient experimental method for observing fractal dimension, by measuring the power-law scaling of the resistance of a fractal network of resistors. The experiments are quick to perform, and the students enjoy both the construction of the network and the collaboration required to create the largest networks. Learning outcomes include analysis of resistor networks beyond the elementary series and parallel combinations, scaling laws, and an introduction to fractional dimension.
Publisher
American Association of Physics Teachers (AAPT)
Subject
General Physics and Astronomy,Education
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献