Affiliation:
1. School of Chemical and Physical Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
Abstract
We investigate the electrostatic energy of one-dimensional line charges, focusing on the energy difference between lines of different shapes. The self-energy of a strictly one-dimensional charge is infinite, but one can quantify the energy by considering geometries that approach a one-dimensional curve, for example, thin wires, thin strips, or chains of close point charges. In each model, the energy diverges logarithmically as the geometry approaches a perfect one-dimensional curve, but the energy also contains a finite term depending on the shape of the line—the “shape energy.” The difference in shape energy between a straight line and a circle is checked to be the same using a range of models. To calculate the shape energy of more complex shapes numerically, we propose a line integral where the singularity in the integrand is canceled. This integral is used to calculate the shape energy of a helix.
Funder
Victoria University of Wellington
Publisher
American Association of Physics Teachers (AAPT)
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献