On Encryption with Continued Fraction

Author:

GÜNEY DUMAN Merve1

Affiliation:

1. SAKARYA UNIVERSITY OF APPLIED SCIENCES, FACULTY OF TECHNOLOGY

Abstract

Many mathematicians have investigated the properties of continued fractions. They made continued fraction expansions of the Pi number, the golden ratio and many more special numbers. With the help of continued fractions, solutions of some Diophantine equations are obtained. In this study, encryption was made using continued fractional expansions of the square root of non-perfect-square integers. Each of the 29 letters in the alphabet is represented by the root of nonperfect square integers starting from 2. Then, continued fraction expansions of the square root of each letter’s number equivalent were calculated. Afterwards, all numbers in the continued fraction expansion were considered as an integer by removing the comma. This information was tabulated for later usage. Each word is considered as individual letters, and a space is left between the encrypted versions of each letter. After the encryption process, the process of deciphering the encrypted text was dealt with. In the deciphering process, since there is a blank between the numbers, the numbers are written as a continued fraction and the integer expansion is calculated. Later, the letter corresponding to this number was found.

Publisher

Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi

Subject

General Medicine

Reference21 articles.

1. [1] D. C. Collins, “Continued Fractions,” The MIT Undergraduate J. of Mathematics, vol. 1, pp. 11-20, 1999.

2. [2] M. Kline, Mathematical Thought from Ancient to Modern Times, New York, USA: Oxford University Press, 1972. [3] Koshy, T., “Fibonacci and Lucas Numbers with Application”, New York, USA: Wiley, 2001.

3. [4] Brezinski, C., “History of Continued Fractions and Pade Approximants”, Berlin, Germany: Springer-Verlag, 1990.

4. [5] Ozyılmaz, C., Nallı, A., “Restructuring of Discrete Logarithm Problem and Elgamal Cryptosystem by Using the Power Fibonacci Sequence Module M”, Journal of Science and Arts, ss. 61-70, 2019.

5. [6] Koblitz, N., “Elliptic Curve Cryptosystems”, Mathematics of Computation, 48, 203-209, 1987.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3