1. [1] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017’a). PointNet: Deep learning on point sets for 3D classification and segmentation. Proceedings -30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-January, 77–85. https://doi.org/10.1109/CVPR.2017.16
2. [2] Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). PointNet++: Deep hierarchical feature learning on point sets in a metric space. ArXiv, (Nips).
3. [3] Mccarthy, T., Fotheringham, A. S., Charlton, M., Winstanley, A., & Malley, V. O. (2007). Integration of LiDAR and stereoscopic imagery for route corridor surveying. ANational Centre for Geocomputation, National University of Ireland, Maynooth.
4. [4] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., … Yu, F. (2015). ShapeNet: An Information-Rich 3D Model Repository. Retrieved from http://arxiv.org/abs/1512.03012.
5. [5] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., & Xiao, J. (2015). 3D ShapeNets: A deep representation for volumetric shapes. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07-12-June, 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801.