A brain-computer interface with gamification in the Metaverse

Author:

DAŞDEMİR Yaşar1ORCID

Affiliation:

1. ERZURUM TECHNICAL UNIVERSITY

Abstract

This study contributes to our understanding of the Metaverse by presenting a case study of the implementation of brain-computer interface supported game-based engagement in a Virtual Environment (VE). In VE, individuals can communicate with anyone, anywhere, anytime, without any limits. This situation will increase the barrier-free living standards of disabled people in a more accessible environment. A virtual world of well-being awaits these individuals, primarily through gamified applications thanks to Brain-Computer Interfaces. Virtual environments in the Metaverse can be infinitely large, but the user's movement in a virtual reality (VR) environment is constrained by the natural environment. Locomotion has become a popular motion interface as it allows for full exploration of VE. In this study, the teleport method from locomotion methods was used. To teleport, the user selects the intended location using brain signals before being instantly transported to that location. Brain signals are decomposed into alpha, beta, and gamma bands. The features of each band signal in Time, frequency, and time-frequency domains are extracted. In this proposed method, the highest performance of binary classification was obtained in the frequency domain and the Alpha band. Signals in the alpha band were tested in the domains Time, Frequency, and Time-Frequency. Teleport operations are faster with Time and more stable with the frequency domain. However, the Hilbert-Huang Transform (HHT) method used in the Time-Frequency domain could not respond adequately to real-time applications. All these analyses were experienced in the Erzurum Virtual Tour case study, which was prepared to promote cultural heritage with the gamification method.

Publisher

Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meta-Review on Brain-Computer Interface (BCI) in the Metaverse;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-09-14

2. UbiMeta: A Ubiquitous Operating System Model for Metaverse;International Journal of Crowd Science;2023-12

3. Mimarlık Öğrencilerinin Sanal Gerçeklik Ortamında Safranbolu Tabakhanesinde Rölöve Alma Deneyimi;Fırat Üniversitesi Mühendislik Bilimleri Dergisi;2023-10-25

4. Development of an Integrated Protocol for XR EEG Authentication and BCI Illiteracy Classification Based on 2D CNN;JOURNAL OF BROADCAST ENGINEERING;2023-09-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3