A k-mer based metaheuristic approach for detecting COVID-19 variants

Author:

ARSLAN Hilal1

Affiliation:

1. ANKARA YILDIRIM BEYAZIT UNIVERSITY

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to coronaviridae family and a change in the genetic sequence of SARS-CoV-2 is named as a mutation that causes to variants of SARS-CoV-2. In this paper, we propose a novel and efficient method to predict SARS-CoV-2 variants of concern from whole human genome sequences. In this method, we describe 16 dinucleotide and 64 trinucleotide features to differentiate SARS-CoV-2 variants of concern. The efficacy of the proposed features is proved by using four classifiers, k-nearest neighbor, support vector machines, multilayer perceptron, and random forest. The proposed method is evaluated on the dataset including 223,326 complete human genome sequences including recently designated variants of concern, Alpha, Beta, Gamma, Delta, and Omicron variants. Experimental results present that overall accuracy for detecting SARS-CoV-2 variants of concern remarkably increases when trinucleotide features rather than dinucleotide features are used. Furthermore, we use the whale optimization algorithm, which is a state-of-the-art method for reducing the number of features and choosing the most relevant features. We select 44 trinucleotide features out of 64 to differentiate SARS-CoV-2 variants with acceptable accuracy as a result of the whale optimization method. Experimental results indicate that the SVM classifier with selected features achieves about 99% accuracy, sensitivity, specificity, precision on average. The proposed method presents an admirable performance for detecting SARS-CoV-2 variants.

Publisher

Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3