Modelling the machines’ language with natural language processing and machine learning algorithms

Author:

DAYAN Ali1,YILMAZ Atınç2

Affiliation:

1. BEYKENT ÜNİVERSİTESİ

2. BEYKENT ÜNİVERSİTESİ, MÜHENDİSLİK-MİMARLIK FAKÜLTESİ

Abstract

Language is one of the most important elements of communication for people and all living things. A large number of studies have been conducted in the literature on the formation of languages and natural language processing processes. It has been observed that these studies contain differences in terms of analysis, approach and method. In the study, a model has been proposed for machines to create their own language as a contribution to the literature. With this point of view, it has been contributed to the idea that the efficiency of all processes will increase by communicating with each other in their own language like humans. With the aim of developing an approach for machines to produce their own languages, it is aimed to distinguish the sounds of living things by classifying them and to generate new sounds by using convolutional deep neural network method. In the study, the applied alphabet was decided by the system. In next step, Regenerative Artificial Neural Networks were used together with Mel Frequency Cepstral Coefficient and Dynamic Time Warp methodologies to create similar sounds and the living things were named with their respective sounds. Unlike similar studies, a visual data was applied which was converted from the audio files that was obtained from Kaggle open data repository "Audio Cats and Dogs" dataset. In addition, the model was supported with CNN networks to achieve effective performance.

Publisher

Dicle Universitesi Muhendislik Fakultesi Muhendislik Dergisi

Subject

General Medicine

Reference15 articles.

1. [1] A. M. Turing, “Computing machinery and intelligence,” Mind, vol. 59, no. 236, pp. 433-460, 1950.

2. [2] T. Winograd, “Five lectures on artificial intelligence,”, 1st ed., Standford University, 1974.

3. [3] J. Searle, “Minds, brains and programs,” The Behavioral and Brain Sciences. 1980.

4. [4] A. Dayan, “Doğal dil işleme ile makinelerin kendi dilini modellemesi,” M.S. thesis, Dept. Computer. Eng., Beykent Univ., İstanbul, Türkiye, 2022.

5. [5] Kaggle audio cats and dogs dataset [Online]. Available: https://www.kaggle.com/datasets/mmoreaux/audio-cats-and-dogs, Accessed on: Aug. 10, 2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reading Gokturkish text with the Yolo object detection algorithm;Journal of Mechatronics and Artificial Intelligence in Engineering;2024-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3