Acid-Induced Emulsion and Sludge Mitigation: A Lab Study

Author:

Alhamad Luai1,Alfakher Basil1,Al-Taq Ali1,Alsalem Ali1

Affiliation:

1. Saudi Aramco

Abstract

AbstractAcid matrix stimulation is a widely used method to improve well productivity by removing and/or bypassing damage in the near wellbore area and creating channels for hydrocarbon flow. Hydrochloric (HCl) and organic acids are commonly used to design fluid recipes utilized in these treatments. However, these acids can cause formation damage by forming stable emulsions and sludge upon contact with formation crude if the treatment and/or stimulation fluid are not designed carefully. It is well reported that acid in contact with crude oil can destabilize asphaltenes either by neutralizing asphaltene or dissolution of resins. Therefore, acid recipe chemical additives must be selected and examined carefully to ensure effective acidizing treatments.In this study, the interaction of different HCl-based recipes with oil was investigated using different lab techniques and analysis including acid/oil separation tests, sludging tendency testing, and SARA analysis. The influence of several factors including acid concentration, acid type, and dissolved iron content were investigated. Experiments were conducted with varying acid blends, demulsifier and anti-sludge type and concentration. To simulate dissolving corrosion products by acids in downhole environment, ferric chloride was incorporated in acid recipes.The results showed an increase in temperature enhanced emulsion/sludge breaking tendency. The addition of demulsifier/anti-sludge agents in acid recipes was necessary to avoid creating stable emulsions and sludge that can damage reservoir permeability. Higher amounts of dissolved iron in the acid solution resulted in a more stable emulsion and enhanced sludge formation. Asphaltene problematic oil, as determined from the asphaltene colloidal instability index, showed severe sludging tendency. Lastly, the use of HCl/organic acid blends may be necessary for some oil types to avoid formation of sludge.This paper showcases a comprehensive testing method to mitigate formation damage from acidizing treatments. The testing can be expanded to design an acid stimulation fluid recipe to minimize acid-induced formation damage and maximize well productivity enhancement.

Publisher

IPTC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3