Anti-Agglomerants: Study of Hydrate Structural, Gas Composition, Hydrate Amount, and Water Cut Effect

Author:

Aminnaji Morteza1,Hase Alfred1,Crombie Laura1

Affiliation:

1. ChampionX

Abstract

AbstractKinetic hydrate inhibitors (KHIs) and anti-agglomerants (AAs) – known as low dosage hydrate inhibitors (LDHIs) – have been used widely for gas hydrate prevention in oil and gas operations. They offer significant advantages over thermodynamic inhibitors (e.g., methanol and glycols). While significant works have been done on KHIs evaluation, AAs suffer from their evaluation in terms of hydrate structural effect, gas composition, water cut, and hydrate amount, which are the main objectives of this work.A Shut-in-Restart procedure was carried out to experimentally evaluate (using a visual rocking cell) various commercial AAs in different gas compositions (from a simple methane system to multicomponent natural gas systems). The kinetics of hydrate growth rate and the amount of hydrate formation in the presence of AAs were also analysed using the recorded pressure-temperature data. The amount of hydrate formation (WCH: percentage of water converted to hydrate) was also calculated by pressure drop and establishing the pressure-temperature hydrate flash.The experimental results from the step heating equilibrium point measurement suggest the formation of multiple hydrate structures or phases in order of thermodynamic stability rather than the formation of simple structure II hydrate in the multicomponent natural gas system. The initial findings of experimental studies show that the performance of AAs is not identical for different gas compositions. This is potentially due to the hydrate structural effect on AAs performance. For example, while a commercially available AA (as tested here) could not prevent hydrate agglomeration/blockage in the methane system (plugging occurred after 2% hydrate formed in the system), it showed a much better performance in the natural gas systems. In addition, while hydrate plugging was not observed in the visual rocking cell in the rich natural gas system with AA (at a high subcooling temperature of ∼15°C), some hydrate agglomeration and hydrate plugging were observed for the lean natural gas system at the same subcooling temperature. It is speculated that methane hydrate structure I is potentially the main reason for hydrate plugging and failure of AAs. Finally, the results indicate that water cut%, gas composition, and AAs concentration have a significant effect on hydrate growth rate and hydrate plugging.In addition to increasing confidence in AAs field use, findings potentially have novel applications with respect to hydrate structural effect on plugging and hydrate plug calculation. A robust pressure-temperature hydrate flash calculation is required to calculate the percent of water converted to hydrate during hydrate growth in the presence of AAs.

Publisher

IPTC

Reference37 articles.

1. Can Kinetic Hydrate Inhibitors Inhibit the Growth of Pre-Formed Gas Hydrates?;Aminnaji;Journal of Natural Gas Science and Engineering,2022

2. Anomalous KHI-Induced Dissociation of Gas Hydrates inside the Hydrate Stability Zone: Experimental Observations & Potential Mechanisms;Aminnaji;Journal of Petroleum Science and Engineering,2019

3. Experimental Measurement of Multiple Hydrate Structure Formation in Binary and Ternary Natural Gas Analogue Systems by Isochoric Equilibrium Methods;Aminnaji;Energy & Fuels,2021

4. Effect of Injected Chemical Density on Hydrate Blockage Removal in Vertical Pipes: Use of MEG/MeOH Mixture to Remove Hydrate Blockage;Aminnaji;Journal of Natural Gas Science and Engineering,2017

5. Gas Hydrate Blockage Removal Using Chemical Injection in Vertical Pipes;Aminnaji;Journal of Natural Gas Science and Engineering,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3